Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535487

RESUMO

The miniaturization, lightweight, and solidification of pulse forming lines (PFLs) are of prime significance during the evolution of pulsed power technology. In this paper, an all-solid-state annular pulse forming line (APFL) based on film-insulated coaxial transmission lines is developed to generate fast-rise time quasi-square pulses. First, a coiled coaxial transmission line (CCTL) comprised of multilayer polypropylene films with outstanding insulating properties is constructed. It can withstand direct current voltages up to 200 kV, with a cross section diameter of 7.4 mm. In addition, in order to turn the pulse transmission direction from circumferential to axial, a compact insulated terminal with a 90° bend structure is designed for CCTL. Although single terminal inductance can slow down the rising edge of the output pulse, their parallel connection in an APFL can weaken such an effect. The APFL, with a characteristic impedance of 2.95 Ω and a transmission time of 13 ns, is composed of three CCTLs with six terminals, which can run over 100 thousand times under the pulse voltage of 75 kV. Finally, 15 series APFL modules are employed to assemble a multi-stage PFL for the Tesla-type pulse generator. When charged to a voltage of 1 MV, the mixed PFL consisting of a coaxial line and the multi-stage PFL outputs quasi-square pulses with a voltage amplitude, rise time, and width of 510 kV, 4 ns, and 41.5 ns, respectively, and the fluctuation of the flat top is about 6%.

3.
Rev Sci Instrum ; 93(4): 044703, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489891

RESUMO

A compact multi-wire-layered secondary winding for the Tesla transformer was proposed by Zhao et al. [Rev. Sci. Instrum. 88(5), 055112 (2017)]. The basic idea is to wind multiple layers of a metal wire around a polymeric base tube. However, the lifetime of this type of winding is only about 200 000 pulses, and thus it fails to meet the requirement of a lifetime of 1 × 106 pulses. In this study, two methods are developed to prolong the lifetime of this winding. One method involves replacing the original three-skin wire with a polytetrafluoroethylene (PTFE) wire. The results of small-scale experiments in different conditions show that the lifetime of the PTFE-covered copper wire is at least ten times longer than that of the three-skin wire. The other method involves improving the local structure of this winding. A strong mechanical stress is concentrated at the small end of the winding, and a highly intense electric field appears in this region, where both reduce the lifetime of the winding. Improving the local structure of the winding theoretically prolongs its lifetime by a factor of 4. Both methods were applied to the original secondary winding of a Tesla transformer and extended its theoretical lifetime by a factor of 40. The modified winding had a lifetime longer than 2 × 106 pulses without any traces of discharge. This is equivalent to a lifetime longer than that of the original winding by a factor of 10 and verifies the effectiveness of the proposed methods.

4.
Rev Sci Instrum ; 92(4): 044707, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243483

RESUMO

The pulse lifetime characteristics of solid materials have been widely concerned in the field of pulse power technology. In this paper, a repetitive high-voltage pulse lifetime test platform for the pulse lifetime test of insulation materials is set up. The platform contains a closed magnetic-core transformer and a sample cavity. The transformer insulated by transformer oil was stably operated at the 100 kV/50 Hz mode with maximum rise time of 45 µs. The sample cavity insulated by SF6 gas includes a gas switch with an amplitude jitter less than 3% at the 50 Hz mode. The platform has advantages of high efficiency and reliability. First, it can generate three kinds of different pulses simultaneously, which satisfied the insulation test requirements under different pulse conditions. The first kind of the generated pulse is a sinusoidal pulse with an amplitude of 100 kV when the gas switch keeps open. The second one is a unipolar microsecond pulse when the gas switch closes. The last one is a nanosecond pulse generated by secondary capacitor discharge. Second, long-time operation of the platform including the pulse transformer is realized. The platform was stably operated for more than 20 × 106 pulses at the 50 Hz/100 kV mode for pulse lifetime tests of solid pulse forming lines and other solid materials.

5.
Rev Sci Instrum ; 91(7): 074710, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752841

RESUMO

To shorten the length of the pulse-forming line (PFL) and generate pulses with good flat-top quality, a 5-GW Tesla-type pulse generator based on a mixed PFL is developed in this paper to produce intense electron beams and generate high-power microwaves (HPMs). The mixed PFL is composed of a coaxial PFL and a multistage series annular PFL, which, in turn, consists of 18 coaxial-output capacitor-loaded annular PFL modules in series. The generator can produce quasi-square electrical pulses with a width of 43 ns and a peak power of 5 GW on a matched load. In experiments where it is used to drive a relative backward-wave oscillator to generate HPMs, the results show that the HPM frequency is 16.15 GHz and the power is 1.06 GW with an efficiency of 25% when the voltage of the diode is 620 kV and the beam current is 6.9 kA.

6.
Rev Sci Instrum ; 89(9): 095101, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278710

RESUMO

A quasi-coaxial high-voltage (HV) rolled pulse forming line (rolled PFL) is researched in this paper. The PFL is rolled n circles on a support cylinder simultaneously by two layers of copper foil electrodes and two layers of insulation dielectrics. The first circle of the two electrodes are elicited in opposite directions along the axis, acting as the quasi-coaxial output structure of the PFL, and the left n - 1 circles of the PFL form a complete rolled strip line of n - 1 circles. The rolled PFL is convenient to realize HV insulation and is able to output a pulse with good quality. Characteristic parameters of the PFL are designed theoretically. Besides, the pulse discharge process of the PFL is simulated by computer simulation technology (CST) modeling, and the simulation result verifies the correctness of theory design. Furthermore, a rolled PFL with a characteristic impedance of 4.4 Ω is developed. The test characteristic impedance of the developed PFL by the incident pulse method confirms to the theory design. The discharge voltage waveform with a full width at half maximum of 57 ns of the PFL is acquired, which has a rise time of 6.8 ns. The HV test of the rolled PFL is carried out, and a discharge current pulse with an amplitude of 7 kA is acquired when the PFL is charged to 70 kV. It is calculated that the developed PFL has an energy storage density of 2.5 J/l. A Tesla generator based on 13 stages of rolled PFLs is designed, which is expected to output a 450 kV pulse with a duration of 100 ns on a 40-Ω match load. The discharge waveform of the generator is simulated by the CST software. The simulative output pulse has a rise time of 5 ns, with a flattop jitter less than 5%.

7.
Rev Sci Instrum ; 89(4): 044706, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716348

RESUMO

A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

8.
Rev Sci Instrum ; 88(9): 096101, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964179

RESUMO

A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser-TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

9.
Rev Sci Instrum ; 88(5): 055112, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571472

RESUMO

A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 104 pulses, which proves the feasibility of the MWL secondary winding.

10.
Rev Sci Instrum ; 88(2): 024705, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249517

RESUMO

A megavolt low-jitter self-break repetitive gas switch is developed by the use of the corona stabilization and the multi-stage structure in this paper. This switch is multi-stage, consisting of one corona stabilization stage and subsequent rimfire stages. The corona stabilization stage breakdowns first, then the subsequent rimfire stages are self-fired by the over-voltage from the closure of the corona stabilization stage. SF6 is used in the switch. It has been proven by experiment that the multi-stage gas switch, which consists of one 1.3-cm gap corona stabilization stage and five 0.5-cm gap rimfire stages, can operate at repetition rate frequency (PRF) of 50 Hz with a voltage jitter less than 2% in 2000 discharges. The breakdown voltage of this multi-stage switch reaches 770 kV and the single discharge current is 8.50 kA at 4 bars.

11.
Rev Sci Instrum ; 87(10): 105118, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27802755

RESUMO

A voltage-division-type (V/N) low-jitter self-triggered multi-stage switch is put forward. It comprises of a triggered corona gap, several quasi-uniform-field gaps, and an inversion inductor. When the corona gap is in the stage of self-breakdown, the multi-stage gaps are triggered and the switch is closed via an over-voltage. This type of V/N switch has the advantage of compact structure since the auxiliary components like the gas-blowing system and the triggered system are eliminated from the whole system. It also has advantages such as low breakdown jitter and high energy efficiency. The dependence of the self-triggered voltage on the over-voltage factor and the switch operating voltage is deduced. A switch of this type is designed and fabricated and experiments to research its characteristics are conducted. The results show that this switch can operate on a voltage of 1 MV at 50 Hz and can generate 1000 successive pulses with a jitter as low as 3% and an energy efficiency as high as 90%. This V/N switch can work under a high repetition rate with a long lifetime.

12.
Rev Sci Instrum ; 87(8): 086107, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587178

RESUMO

An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

13.
Rev Sci Instrum ; 86(4): 043302, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933850

RESUMO

A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.

14.
Rev Sci Instrum ; 86(1): 015109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25638124

RESUMO

A large-dynamic-range current probe for microsecond pulsed vacuum breakdown research is fabricated. The basic principle of this probe is to turn the current signal to a voltage one via a load of fixed impedance and to test the voltage signal via a voltage divider of adjustable voltage ratio. With a segment of 40-Ω coaxial line, which is connected to the experimental chamber, and a self-fabricated two-stage resistor-capacitor voltage divider, the current probe is realized and is applied to test the vacuum breakdown current for 3-cm parallel-plate electrodes under microsecond pulses. The results show that the current probe is capable of responding to current signals with an amplitude of 10(-2)-10(3) A and a duration of 10(-2)-10(1) µs. Based on the current probe, the characteristics of the vacuum breakdown current under 30-µs quasi-sinusoidal pulses are summarized. The potential mechanisms for each type of current are also discussed in this paper.

15.
Rev Sci Instrum ; 85(6): 063303, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985810

RESUMO

A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

16.
Rev Sci Instrum ; 85(3): 035110, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689623

RESUMO

A novel structure of transmission line transformer (TLT) with mutually coupled windings is described in this paper. All transmission lines except the first stage of the transformer are wound on a common ferrite core for the TLT with this structure. A referral method was introduced to analyze the TLT with this structure, and an analytic expression of the step response was derived. It is shown that a TLT with this structure has a significantly slower droop rate than a TLT with other winding structures and the number of ferrite cores needed is largely reduced. A four-stage TLT with this structure was developed, whose input and output impedance were 4.2 Ω and 67.7 Ω, respectively. A frequency response test of the TLT was carried out. The test results showed that pulse response time of the TLT is several nanoseconds. The TLT described in this paper has the potential to be used as a rectangle pulse transformer with very fast response time.

17.
Rev Sci Instrum ; 84(12): 125102, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387463

RESUMO

A MHz repetitive and nanosecond pulsed power generator based on the semiconductor opening switch (SOS) is developed, in which the pulse compression unit utilizes several Radio Frequency (RF) MOSFETs and a saturable Linear Transformer Driver (LTD). The RF MOSFETs are employed to obtain the forward pumping current pulses with the duration of tens of nanoseconds; the saturable LTD is used to raise the pulse voltage, to compress the pulse width and to pump SOS reversely. The SOS assembly cuts off the reverse current in a few nanoseconds, leading to a narrow output pulse on an external load. The experimental results show that the amplitude of the output pulse on a 106 Ω resistive load is about 3.8 kV and the width is 2 ns. Due to the repetitive ability of the RF MOSFETs, the generator can operate at a repetitive frequency of higher than 4 MHz in burst mode.

18.
Rev Sci Instrum ; 80(9): 093303, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19791935

RESUMO

The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz.


Assuntos
Estimulação Elétrica/instrumentação , Oscilometria/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...